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Abstract: We study the implications of imperfect information for term
structures of credit spreads on corporate bonds. We suppose that bond in-
vestors cannot observe the issuer’s assets directly, and receive instead only
periodic and imperfect accounting reports. For a setting in which the assets
of the firm are a geometric Brownian motion until informed equityholders op-
timally liquidate, we derive the conditional distribution of the assets, given
accounting data and survivorship. Contrary to the perfect-information case,
there exists a default-arrival intensity process. That intensity is calculated
in terms of the conditional distribution of assets. Credit yield spreads are
characterized in terms of accounting information. Generalizations are pro-
vided.
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1 Introduction

This paper analyses term structures of credit risk and yield spreads in sec-
ondary markets for the corporate debt of firms that are not perfectly trans-
parent to bond investors.
The valuation of risky debt is central to theoretical and empirical work

in corporate finance. A leading paradigm in corporate-bond valuation has
taken as given the dynamics of the assets of the issuing firm, and priced
corporate bonds as contingent claims on the assets, as in Black and Scholes
(1973) and Merton (1974). Generalizations treat coupon bonds and the ef-
fects of bond indenture provisions [Black and Cox (1976) and Geske (1977)]
and stochastic interest rates [Shimko, Tejima and van Deventer (1993) and
Longstaff and Schwartz (1995)]. By introducing bankruptcy costs and tax
effects, this framework has been extended to treat endogenous capital struc-
ture, liquidation policy, re-capitalization, and re-negotiation of debt [Brennan
and Schwartz (1984), Fischer, Heinkel, and Zechner (1989), Leland (1994,
1998), Leland and Toft (1996), Uhrig-Homburg (1998), Anderson and Sun-
daresan (1996), Mella-Baral and Perraudin (1997).] These second-generation
models allow for endogenous default, optimally triggered by equity owners
when assets fall to a sufficiently low level.
In practice, it is typically difficult for investors in the secondary market

for corporate bonds to observe a firm’s assets directly, because of noisy or
delayed accounting reports, or barriers to monitoring by other means. In-
vestors must instead draw inference from the available accounting data and
from other publicly available information, for example business-cycle data,
that would bear on the issuer’s credit quality. Under informational assump-
tions, we derive public investors’ conditional distribution of the issuer’s as-
sets, explicitly accounting for the implications of imperfect information and
survivorship. This provides a model for conditional default probabilities at
each future maturity. Default occurs at an arrival intensity that bond in-
vestors can calculate in terms of observable variables.
We show several significant implications of incomplete information for the

level and shape of the term structure of secondary-market yield spreads (the
excess over risk-free interest rates at which corporate bond prices are quoted
in public markets). With perfect information, yield spreads for surviving
firms are zero at zero maturity, and are relatively small for small maturities,
regardless of the riskiness of the firm. As illustrated in Figure 1, yield spreads
for relatively risky firms would, with perfect information, eventually climb
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rapidly with maturity. (The assumptions and parameters used for this figure
are explained in Section 2.) Such severe variation in the shape of the term
structure of yield spreads is uncommon in practice [Fons (1994); Helwege
and Turner (1999); Johnson (1967); Jones, Mason, and Rosenfeld (1984);
and Sarig and Warga (1989).] With imperfect information, however, yield
spreads are strictly positive at zero maturity because investors’ are uncertain
about the nearness of current assets to the trigger level at which the firm
would declare default. This uncertainty causes a more moderate variation in
spreads with maturity, as illustrated in Figure 1 for an otherwise identical
firm whose accounting reports are noisy. The shape of the term structure
of credit spreads may indeed play a useful empirical role in estimating the
degree of transparency of a firm as viewed by bond-market participants.
The existence of a default intensity, moreover, is consistent with the fact
that bond prices often drop precipitously at or around the time of default.
(With perfect information, as default approaches bond prices would converge
continuously to their default-contingent values.)
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Figure 1: Credit Spreads under perfect and imperfect information.

As opposed to the structural models described above, which link default
explicitly to the first time that assets fall below a certain level, a more recent
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literature has adopted a reduced-form approach, assuming that the default
arrival intensity exists, and formulating it directly as a function of latent
state variables or predictors of default.2 The popularity of this reduced-
form approach to modeling defaultable bonds and credit derivatives, partic-
ularly in business and econometric applications [Duffee (1999)] arises from
its tractability.
This approach allows the application of statistical methods for estimating

the incidence of default [Altman (1968), Bijnen and Wijn (1994), Lennox
(1999), Lundstedt and Hillgeist (1998), McDonald and Van de Gucht (1999),
Shumway (1996)], and the use of convenient methods for risk management
and derivative pricing that were originally developed for default-free term
structures.
We present here a first example of a structural model that is consistent

with such a reduced-form representation.
Bounding short spreads away from zero can also be obtained in a struc-

tural model in which the assets of a firm are perfectly observable and given by
a jump-diffusion process, as in Zhou (1997). This approach is not, however,
consistent3 with a stochastic intensity for default (unless the only variation
in asset levels is through jumps). Hence, this approach does not lay the
theoretical groundwork for hazard-rate based estimation of default intensi-
ties. With precisely measured assets, moreover, this jump-diffusion model
offers no role in the estimation of default risk for such potentially useful ex-
planatory variables as duration of survivorship, industrial performance, or
consumer confidence. One could, of course, build a model for a firm with
complete information in which various different state variables determine the
dynamics of assets or liabilities, and would therefore also be determinants of
default risk.

2See for example Artzner and Delbaen (1995), Arvanitis, Gregory and Laurent (1999)
Duffie and Singleton (1999), Duffie, Schroder, and Skiadas (1996), Jarrow and Turnbull
(1995), Jarrow, Lando, and Turnbull (1997), Lando (1994, 1998), Madan and Unal (1998),
and Schönbucher (1998).
3For a stopping time τ to have an associated intensity, it must (among other properties)

be totally inaccessible, meaning that, for any sequence of stopping times, the probability
that the sequence approaches τ strictly from below is zero. See, for example, Meyer (1966),
page 130, Definition D42. The first time τ = inf{Vt ≤ VB} that the asset process V defined
by Zhou (1997) cross the default boundary VB could be the time of a jump, or could be
via a continuous (“diffusion”) crossing. That is, if we let τn = inf{t : Vt ≤ VB + n

−1},
then there is a strictly positive probability that τn converges to τ , so τ is not totally
inaccessible, and therefore does not have an intensity.
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2 The Basic Model

This section presents our basic model of a firm with incomplete secondary-
market information about the credit quality of its debt. For simplicity, we
treat a time-homogeneous setting, staying within the tradition of the work of
Anderson, Pan, and Sundaresan (1995), Anderson and Sundaresan (1996),
Fan and Sundaresan (1997), Fischer, Heinkel, and Zechner (1989), Leland
(1994, 1998), Leland and Toft (1996), Mella-Barral (1999), Mella-Barral and
Perraudin (1997), and Uhrig-Homburg (1998). We solve for the optimal cap-
ital structure and default policy, and then derive the conditional distribution
of the firm’s assets, given incomplete accounting information, along with the
associated default probabilities, default arrival intensity, and credit spreads.
In Section 3, we treat extensions of the basic model.

2.1 Setup and Optimal Liquidation

We begin by reviewing a standard model of a firm’s assets, capital struc-
ture, and optimal liquidation policy. With some exceptions, the results are
basically those of Leland and Toft (1996).
The stochastic process V describing the stock of assets of our given firm

is modeled as a geometric Brownian motion, which is defined, along with all
other random variables, on a fixed probability space (Ω,F , P ). In particular,
Vt = e

Z(t), where Zt = Z0+mt+σWt, for a standard Brownian motionW , a
volatility parameter σ > 0, and a parameter m ∈ (−∞,∞) that determines
the expected asset growth rate µ = t−1 log[E(Vt/V0)] = m+ σ2/2. The firm
generates cash flow at the rate δVt at time t, for some constant δ ∈ (0,∞).
The firm issues debt so as to take advantage of the tax shields offered

for interest expense, at the constant tax rate θ ∈ (0, 1). In order to stay in
a simple time-homogeneous setting, the debt is modeled as a consol bond,
meaning a commitment to pay coupons indefinitely at some constant total
coupon rate C > 0. Tax benefits for this bond are therefore received at
the constant rate θC, until liquidation. (We briefly consider callable debt in
Section 3.)
All agents in our model are risk-neutral, and discount cash flows at a

fixed market interest rate r.
The debt is sold at time 0 for some amount D to be determined shortly.

For contractual purposes, it assumed that the debt is issued at par, deter-
mining its face value D and coupon rate C/D. The optimal amount of debt
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to be issued will be discussed after considering its valuation.
The firm is operated by its equity owners, who are completely informed

at all times of the firm’s assets. This means that they have the information
filtration (Ft) generated4 by V . The expected present value at time t of the
cash flows to be generated by the assets, excluding the effects of liquidation
losses and tax shields, conditional on the current level Vt of assets, is

E

[∫ ∞
t

e−r(s−t)δVs ds
∣∣∣ Vt] = δVt

r − µ, (1)

provided that r > µ. (If µ ≥ r, the present value of cash flows is infinite, a
case we do not consider.) One could therefore equally well take this value or
the firm’s cash flow rate δVt, as the state variable for the firm’s opportunities,
as these alternative state variables are simply multiples of the stock of assets
Vt.
For simplicity, the equity owners’ only choice is when to liquidate the firm.

A liquidation policy is an (Ft)-stopping time τ : Ω→ [0,∞]. Given an asset
level at liquidation of Vτ , we choose for simplicity to define the liquidation
value of the assets to be δ(r−µ)−1Vτ , i.e. the present unlevered value defined
in (1). Alternatively, one could consider a liquidation value which reflects the
value of assets in an optimally levered, reorganized firm. This would require
the solution of an associated fixed-point problem - a problem which is not
central to the objectives of this paper. At the chosen liquidation time τ , a
fraction α ∈ [0, 1] of the assets are lost as a frictional cost. The value of the
remaining assets, δ(r−µ)−1(1−α)Vτ , is, by an assumption of strict priority,
assigned to debtholders.5

Proceeds from the sale of debt are paid at time 0 as a cash distribution
to initial equity holders. After this distribution, the initial value of equity to

4That is, for each t > 0, Ft is the σ-algebra generated by {Vs : 0 ≤ s ≤ t}.
5For an alternative formulation, one might suppose that equity holders would receive at

liquidation any excess of the recovery value of assets, δ(r−µ)−1(1−α)Vτ , over the face value
D of debt, with min(δ(r−µ)−1(1−α)Vτ , D) going to debtholders. For certain parameters,
such as those used in our illustrative numerical example to follow, the two formulations
imply the same default policy and valuations, as equityholders would in any case optimally
declare default only when there are insufficient post-recovery assets to cover the face value
of debt. In other parameters cases (with large V0, r, and C, and with negligible σ, µ, and
δ), equityholders given the chance for recovery of max(0, δ(r− µ)−1(1− α)Vτ −D) would
liquidate at time 0.
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shareholders, given a liquidation policy τ and coupon rate C, is

F (V0, C, τ) = E

[∫ τ
0

e−rt(δVt + (θ − 1)C) dt
]
. (2)

Equity shareholders would therefore choose the liquidation policy solving
the optimization problem

S0 = sup
τ∈T

F (V0, C, τ), (3)

where T is the set of (Ft)-stopping times.
If at some time t the asset level Vt is less than C/δ, then equity owners

have a net negative dividend rate.6 Equity owners may nevertheless prefer
to continue operating the firm, suffering such negative distributions, bearing
in mind that assets might eventually rise and create large future dividends.
At some sufficiently low level of assets, however, the prospects for such a
future recovery are dim enough to warrant immediate liquidation. Indeed,
the optimal liquidation time, as shown in a different7 context by Leland
(1994), is the first time τ(VB) = inf{t : Vt ≤ VB} that the asset level falls
to some sufficiently low boundary VB > 0. The optimality of such a trigger
policy is unsurprising, as Vt is a sufficient statistic for the firm’s future cash
flows, and cash flows are increasing in Vt.
Specifically, one conjectures that the optimal equity value at time t,

St = ess sup
τ∈T

E

[∫ τ
t

e−r(s−t)(δVs + (θ − 1)C) ds
∣∣∣ Ft] , (4)

is given by St = w(Vt), where w solves the Hamilton-Jacobi-Bellman differ-
ential equation

w′(v)µv +
1

2
w′′(v)σ2v2 − rw(v) = (1− θ)C − δv, v > VB, (5)

with the boundary conditions

w(v) = 0, v ≤ VB, (6)

6In a model restricted to have non-negative net equity dividends per share, such net
negative cash distributions could be funded by dilution, for example through share pur-
chase rights issued to current shareholders at the current valuation.
7Leland’s 1994 model has δ = 0. With δ = 0, the manner in which equity holders extract

value is not modeled. The subsequent results of Leland and Toft (1996) and Leland (1998)
have δ > 0, although the candidate solution was not subjected to verification.
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and

w′(VB) = 0. (7)

Under this conjecture, to be verified shortly, (6) means that it is no longer
optimal to operate the firm once the equity value has been reduced to its
liquidation value, while (7) is the so-called “smooth-pasting” condition. The
differential equation (5) states that, so long as it optimal to continue operat-
ing the firm, the expected rate of increase in equity value, net of the rate of
opportunity cost rw(v) of equity capital, is equal the net rate at which cash
is paid out by equity.
The HJB equation is solved by w(v) = 0 for v ≤ VB = vB(C), where

vB(C) =
(1− θ)Cγ(r − µ)

r(1 + γ)δ
, (8)

where

γ =
m+

√
m2 + 2rσ2

σ2
,

and, for v > VB,

w(v) =
δv

r − µ −
vB(C)δ

r − µ

(
v

vB(C)

)−γ
+ (θ − 1)C

r

[
1−

(
v

vB(C)

)−γ]
. (9)

The first term in (9) represents the present value of all future cash flows
generated by assets, assuming no liquidation. The second term represents
the present value of the cash flows lost to distress or transferred to debtholders
at the time of liquidation. The last term represents the costs of all future
debt coupon payments, net of tax shields. The key factor (v/vB(C))

−γ is the
present value at an asset level v > vB(C) of receiving one unit of account at
the stopping time τ(vB(C)).
The optimality property

S0 = w(V0) = F (V0, C, τ(VB)) (10)

is verified as follows. For each t, let

qt = e
−rtw(Vt) +

∫ t
0

e−rs(δVs − (1− θ)C) ds.
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From (5) and Ito’s Formula,8 and noting that for v ≤ vB(C) we have both
w(v) = 0 and δv − (1 − θ)C ≤ 0, it follows that q is a uniformly integrable
super-martingale. Thus, for any stopping time τ , we have q0 ≥ E(qτ ). This
implies that, for any stopping time τ , we have

E

[∫ τ
0

e−rs(δVs − (1− θ)C) ds
]
≤ w(V0)− E[e−rτw(Vτ)]. (11)

As w is non-negative, w(V0) ≥ F (V0, C, τ). For the candidate optimal policy
τ = τ(VB), we have w(Vτ) = 0 and equality in (11), confirming optimality
and (10).
The associated expected present value of the cash flows to the bond at

any time t before liquidation, conditional on Vt, is d(Vt, C), where

d(v, C) =
(1− α)vB(C)δ

r − µ

(
v

vB(C)

)−γ
+
C

r

[
1−

(
v

vB(C)

)−γ]
. (12)

We summarize as follows:

Proposition 2.1 Suppose r > µ. Let vB(C) and d(V0, C)) be defined by (8)
and (12), respectively. Then the optimal liquidation problem (3) is solved by
the first time τ(vB(C)) that V is at or below vB(C). The associated initial
values of equity and debt are w(V0) and d(V0, C), respectively, where w is
given by (9) for v > vB(C) and w(v) = 0 for v ≤ vB(C).

We suppose that the total coupon rate C∗(V0) of the bonds to be is-
sued is chosen so as to maximize over C the total initial firm valuation,
F (V0, C, τ(vB(C))+d(V0, C), which is the initial value of equity plus the sale
value of debt.

8Although w need not be twice continuously differentiable, it is convex, C1, and C2

except at VB, where w
′(VB) = 0. We have w(v) = 0 for v ≤ VB . Under these conditions,

w(Vs) = w(V0) +

∫ s
0

1{V (t)>VB}[w
′(Vt)µVt +

1

2
w′′(Vt)σ2V 2t ] dt+

∫ s
0

w′(Vs)σVs dBs.

(See, for example, Karatzas and Shreve (1988), page 219.) Because w′(v) is bounded, the
last term is a martingale.
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2.1.1 Example: Optimal Capital Structure and Liquidation

As a numerical illustration, we consider the case

θ = 0.35; σ = 0.05; r = 0.06; m = 0.01; δ = 0.05; α = 0.3. (13)

As the solutions for the optimal total coupon rate C∗(V0) and the optimal
liquidation boundary VB = vB(C

∗(V0)) are linear in V0, we may without loss
of generality take V0 = 100. For these parameters, we have the optimal total
coupon rate C = 8.00, liquidation boundary VB = vB(C) = 78.0, and initial
par debt level D = d(V0, C) = 129.4. At these parameters, we easily satisfy
the zero-equity-at-liquidation condition δ(r − µ)−1(1− α)vB(C) ≤ d(V0, C),
so the conclusions of Proposition 1 apply.
The yield of the debt is C/D = 6.18%. Recovery of the debt at default, as

a fraction of face value, is δ(r− µ)−1(1− α)VB/D = 43.3%. For comparison,
the average recovery, as a fraction of face value, of all defaulted bonds mon-
itored9 by the rating agency Moody’s, for 1920 to 1997, is 41%. Of course,
recovery varies by subordination and for other reasons.

2.2 Imperfect Bond Market Information

Now we turn to how the secondary-market assesses the firm’s credit risk and
values its bonds.
After issuance, bond investors are not kept fully informed of the status of

the firm. While they do understand that optimizing equity owners will force
liquidation when assets fall to VB, bond investors cannot observe the asset
process V directly. Instead, they receive imperfect information at selected
times t1, t2, . . ., with ti < ti+i. While extensions to more general observation
schemes are provided in the next section, for now we assume that at each
observation time t there is a noisy accounting report of assets, given by V̂t,
where log V̂t and log Vt are joint normal. Specifically, we suppose that Y (t) =
log V̂t = Z(t) + U(t), where U(t) is normally distributed and independent of
Z(t). (The independence assumption is without loss of generality, given joint
normality.)
Also observed at each t ∈ [0,∞) is whether the equity owners have liq-

uidated the firm. That is, the information filtration (Ht) available to the
9See “Historical Default Rates of Corporate Issuers,” Moody’s Investors Service, Febru-

ary, 1998, page 20.
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secondary market is defined by

Ht = σ({Y (t1), . . . , Y (tn), 1{τ≤s} : 0 ≤ s ≤ t}), (14)

for the largest n such that tn ≤ t, where τ = τ(VB).
For simplicity, we suppose that equity is not traded on the public mar-

ket, and that equity owner-managers are precluded, say by insider-trading
regulation, from trading in public debt markets. This allows us to maintain
the simple model (Ht) for the information reaching the secondary bond mar-
ket, and avoiding a complex rational-expectations equilibrium problem with
asymmetric information.
Our main objective for the remainder of this sub-section is to compute

the conditional distribution of Vt given Ht. We will begin with the simple
case of having observed a single noisy observation at time t = t1. In Section
3, we extend to multiple observation times.
We will need,10 as an intermediate calculation, the probability ψ(z0, x, σ

√
t),

conditional on Z starting at some given level z0 at time 0 and ending
11 at

some level x at a given time t, that min{Zs : 0 ≤ s ≤ t} > 0. As indicated
by our notation, this probability does not depend on the drift parameter m,
and depends on the variance parameter σ2 and time t only through the term
k = σ

√
t. From the density of the first-passage time recorded in Chapter 1 of

Harrison (1985), and from Bayes’ Rule, one obtains after some simplification
that

ψ(z, x, k) = 1− exp
(
−2zx
k2

)
. (15)

Next, fixing z0 = Z0, we calculate the density b( · | Yt, z0, t) of Zt, “killed”
at τ = inf{t : Zt ≤ v}, conditional on the observation Yt = Zt + Ut. That is,
using the conventional informal notation,

b(x | Yt, z0, t) dx = P (τ > t and Zt ∈ dx | Yt), x > v. (16)

Using the definition of ψ and Bayes’ Rule,

b(x | Yt, z0, t) =
ψ(z0 − v, x− v, σ

√
t)φU(Yt − x)φZ(x)

φY (Yt)
, (17)

10The approach taken here, as well as the specific calculations for a slightly different
case, were generously shown to us by Michael Harrison. We are much in his debt for this
assistance.
11To be more precise, if we take Z to be a pinned standard Brownian motion, with Z0 =

z > 0 and Zt = x > 0, we want the probability ψ(z, x, t) that min{Zs : 0 ≤ s ≤ t} > 0.

11
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where φU denotes the density of Ut, and likewise for φZ and φY . These
densities are normal, with respective means u = E(Ut), mt + z0, and mt +
z0 + u, and with respective variances a

2 = var(Ut), σ
2t, and a2 + σ2t. The

standard deviation a of Ut may be thought of as a measure of the degree of
accounting noise.
We have

P (τ > t | Yt) =
∫ +∞
v

b(z | Yt, z0, t) dz. (18)

Finally, we compute the density g( · | Yt, z0, t) of Zt, conditional on the noisy
observation Yt and on τ > t. Using (16) and (18), and another application
of Bayes’ Rule,

g(x | y, z0, t) =
b(x | y, z0, t)∫ +∞

v
b(z | y, z0, t) dz

. (19)

Letting ỹ = y−v−u, x̃ = x−v, and z̃0 = z0−v, a calculation of the integral
in (19) leaves us with

g(x | y, z0, t) =

√
β0
π
e−J(ỹ,x̃,z̃0)

[
1− exp

(−2z̃0x̃
σ2t

)]
exp

(
β21
4β0
− β3

)
Φ
(
β1√
2β0

)
− exp

(
β22
4β0
− β3

)
Φ
(
− β2√

2β0

) , (20)
where

J(ỹ, x̃, z̃0) =
(ỹ − x̃)2
2a2

+
(z̃0 +mt− x̃)2

2σ2t
, (21)

for

β0 =
a2 + σ2t

2a2σ2t
(22)

β1 =
ỹ

a2
+
z̃0 +mt

σ2t
(23)

β2 = −β1 + 2
z̃0
σ2t

(24)

β3 =
1

2

(
ỹ2

a2
+
(z̃0 +mt)

2

σ2t

)
, (25)

and where Φ is the standard-normal cumulative distribution function. Given
survival to t, this gives us the conditional distribution of assets, because the
conditional density of Vt at some level v is easily obtained from the conditional
density of Zt at log v.
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2.2.1 Numerical Illustration - Continued

We extend the numerical illustration begun in Section 2.1.1 by considering
the conditional distribution of assets for the same firm at some current date
t > 1. We suppose that a noise-free asset report of V̂ (t−1) = V (t−1) = 86.3
was provided one year ago. Figure 2 shows the conditional density of the
current asset level Vt, given Ht, that would be realized in the event that the
bond has not yet defaulted (τ(VB) > t) and the current asset report V̂t has an
outcome equal to the previous year’s report, 86.3. As the default boundary
is VB = 78, the firm has become rather risky in this scenario. We indicate
various cases for the standard deviation a of the accounting noise Ut. Our
base case is a = 10%. We have no empirical evidence at this writing of a
reasonable level of accounting noise, which in any case would presumably
vary with the nature of a firm, so we consider the effect of variation in
a. We suppose in all cases that Ut has expectation u = −a2/2, so that
E(eU(t)) = 1, implying an unbiased accounting report.12 Figure 3 shows how
this conditional density is affected by the lagged asset report V̂ (t − 1), for
all other parameters at their base cases.
We also compute the Ht-conditional probability p(t, s) of survival to some

future time s > t. That is, p(t, s) = P (τ > s | Ht). For t < τ , we have

p(t, s) =

∫ ∞
v

(1− π (s− t, x− v)) g(x | Yt, z0, t) dx, (26)

where π(t, x) denotes the probability of first passage of a Brownian motion
with drift m and volatility parameter σ from an initial condition x > 0 to a
level below 0 before time t, which is known explicitly [Harrison (1985)]. Fig-
ure 4 illustrates outcomes of the conditional default probability 1 − p(t, s),
for our base-case example, for various time horizons s− t and various levels
a of accounting noise. For example, with perfect information, the condi-
tional probability of default within one year is approximately 2.9%, while
this conditional probability is approximately 6.7% if the accounting assets
are reported with a 10% level of accounting noise.

12This does not imply that the accounting report is conditionally unbiased given sur-
vivorship. One may think, for example, of an accounting report based on a physical mea-
surement of the stock of assets, which is imperfect but unbiased. An alternative would be
an accounting report in the form of a conditional distribution of assets, given survivorship
and the results of noisy measurements. The mean of this conditional distribution would,
by definition, be conditionally unbiased.

13



www.manaraa.com

C
o
n
d
it
io
n
a
l
D
en
si
ty

Actual Asset Level

a = 0.05

a = 0.1

a = 0.25

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

8075 85 9590 100

Figure 2: Conditional density for varying accounting precision.

2.3 Default Intensity

The conditional probability that default occurs within h units of time goes
to zero as h goes to zero, regardless of the informational assumptions. What
distinguishes perfect from imperfect information is the rate of convergence.
In the case of perfect information, that is, for a filtration such as (Ft) to
which Z is adapted, on the event that τ > t we have

lim
h↓0

P (τ ≤ t+ h | Ft)
h

=
π(h, Zt − v)

h
= 0 a.s. (27)

In structural models with default defined as the first hitting time of an ob-
servable diffusion, it is this fact which forces credit spreads on zero-coupon
bonds to go to zero as time to maturity goes to zero, as in Figure 1. It
is tempting to conclude that the same is true with imperfect information,
because, as we see from (26),

1− p(t, t+ h)
h

=

∫ ∞
v

π(h, x− v)
h

g(x | Yt, z0, t) dx,

14
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Figure 3: Conditional asset density, varying previous year asset level.

and the first factor of the integrand converges to 0 for all x. The integral
itself, however, does not converge to 0 as h goes to 0. In this section, we
prove that (in general) a non-zero limit exists, we give an explicit expression
for the limit, and we show that this limit is in fact the intensity of τ, defined as
follows. The default stopping time τ has an intensity process λ with respect
to the filtration (Ht) if λ is a non-negative progressively measurable process
satisfying

∫ t
0
λs ds < ∞ a.s. for all t, such that {1{τ≤t} −

∫ t
0
λs ds : t ≥ 0} is

an (Ht)-martingale. For details, see, for example, Brémaud (1981).
The intuitive meaning of the intensity is that it gives a local default rate,

in that

P (τ ∈ (t, t+ dt] | Ht) = λt dt.

From the results in Section 2.2, at any (ω, t) such that 0 < t < τ(ω), the
Ht-conditional distribution of Zt has a continuously differentiable conditional
density f(t, · , ω). This density is zero at the boundary v, and has a derivative
(from the right) fx(t, v, ω) that exists and is non-zero. We are ready to state
the key result of this section.
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Figure 4: Default probability, varying accounting precision.

Proposition 2.2 Define a process λ by λ(t) = 0 for t > τ and

λt(ω) =
1

2
σ2fx(t, v, ω), 0 < t ≤ τ. (28)

Then λ is an13 (Ht)-intensity process of τ .

A proof is found in Appendix A. In order to gain intuition for the result,
we consider a standard binomial “random-walk” approximation for Z, sup-
posing at first that m = 0. We can assume without loss of generality that
the default-triggering boundary v for Z is 0. For notational simplicity, we
let f( · ) also denote the Ht-conditional density of Zt on the event that τ > t.
The conditional probability that Zt = 0 is zero. The conditional probability
that Zt is one step above 0 is, to first order, approximated by f(σ

√
h)σ
√
h,

as illustrated in Figure 5.
Because the only level from which Zt can reach 0 within one time step of

length h is σ
√
h, the conditional probability of hitting 0 by time h is equal

13While there may exist other (Ht)-intensity processes for τ, they are equivalent for our
purposes. For the sense in which uniqueness applies, see Brémaud (1981), page 30.

16



www.manaraa.com

r�
�
�
�
�
�
�
�
�
�
�
�

H
H
H
H
H
H
H
H
H
H
H
Hr

r

Zt = σ
√
h

P (Zt = σ
√
h | Ht) ≈ f(σ

√
h)σ
√
h

Zt+h = 2σ
√
h

Zt+h = 0

1
2

1
2

︸ ︷︷ ︸
h

Figure 5: Binomial Approximation of Hitting Intensity.

to 1
2
f(σ
√
h)σ
√
h. Thus,

lim
h→0

1

h
P (τ ≤ t+ h | Ht) = lim

h→0

1
2
f(σ
√
h)σ
√
h

h

= lim
h→0

1
2
f(σ
√
h)σ2

σ
√
h

=
1

2
f ′(0)σ2,

where we have used the fact that f(0) = 0 to calculate the derivative. This
binomial approximation can easily be extended to handle a drift term m by

changing the probability of up and down moves to 1
2
+ m

√
h

2σ
and 1

2
− m

√
h

2σ
,

respectively. As h goes to zero these probabilities go to 1
2
, and we have the

same limit result for the intensity.14

14This is a reflection of the fact that, locally, the volatility dominates the evolution of the
Brownian motion. This can be seen from the law of the iterated logarithm [for example,
Karatzas and Shreve (1988)].
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Figure 6: Default intensity, varying accounting precision.

2.4 Credit Spreads

We turn now to the implications of incomplete information for the term
structures of credit yield spreads of the modeled firm.
For a given time T to maturity, the yield spread on a given zero-coupon

bond selling at a price ϕ > 0 is the real number η such that ϕ = e−(r+η)T .
If we assume that a bond with maturity date s > t issued by our modeled
firm recovers some fraction R(s) ∈ [0, 1] of its face value at default, then the
secondary market price ϕ(t, s) at time t of such a bond, in the event that the
firm has yet to default by t, is given by

ϕ(t, s) = e−r(s−t)p(t, s)− R(s)
∫ s
t

e−r(u−t) p(t, du), (29)

where we recall that p(t, u) is the probability of survival to time u. The
first term in (29) is the value of the survival-contingent contractual payoff
of the bond at maturity, while the second is the value of any recovery at
default, contingent on default before maturity. Using (26), our calculation of
ϕ(t, s) is reduced to a single numerical integration over the current log-asset
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Figure 7: Default intensity, varying previous year asset level.

level x, weighted by its conditional density, applying Fubini’s Theorem to
the integral in (29). As our model was based for simplicity on a single consol
bond, and as our calculation of the survival probability p(t, s) is based on that
capital structure, some interpretation of (29) is appropriate. One possibility
is that the consol is stripped in the secondary market into a continuum of
zero-coupon bonds. While various recovery assumptions could be made, it
is convenient for our purposes to assume that, given default at time τ , the
recovery R(s) for a bond with maturity date s > τ is proportional to the
default-free discount e−r(s−τ) for that maturity. (This could, for instance, be
a contractual provision.) Later, we consider default swap spreads, which do
not call for such recovery assumptions.
Figure 1 compares the term structure of credit spreads in our base-case

numerical illustration with the term structure that would apply with perfect
accounting data (dashed curve, for the case with a = 0). Figure 8 compares
the base case (solid curve) with the term structure that would apply with
various qualities of accounting information. Figure 9 compares the base case
(solid curve) against the term structure that would apply with various lagged
asset reports. With perfect accounting information, the previous accounting
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Figure 8: Credit spreads for varying accounting precision.

In a setting of perfect information (a = 0), we have ϕ(t, s) = Jt,s(Vt),
for Jt,s : [0,∞) → (0,∞) determined by (29). If m > 0, it can be shown
by calculation of its second derivative that Jt,s( · ) is concave.15 It follows by
Jensen’s Inequality that yield spreads are larger at an outcome for V̂t that
is conditionally unbiased for Vt than they would be in the case of perfect in-
formation. This is analogous to the fact that, in a Black-Scholes setting, the
equity price as a function of asset level is increasing in the volatility of assets,
and therefore the debt price is decreasing in asset volatility. Here, however,
the asset volatility is fixed, and it is a question of precision of the account-
ing observation. One might extrapolate to practical settings and anticipate
that, other things equal, secondary-market yield spreads are decreasing in
the degree of transparency of a firm. We emphasize this as separate from the
adverse-selection effect on new-issue prices, which may suffer from a lemon’s
premium associated with the issuer’s superior information regarding its own

15A proof, due to Nicolae Gârleanu, is provided in a working-paper version of this paper.
If m < 0, counterexamples can be constructed.
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Figure 9: Credit spreads, varying previous year’s asset level.

credit quality. In our setting, all participants in the secondary market for
bonds are equally well informed; they simply adjust their views regarding
credit risk based on the precision of their information.

2.4.1 Default-Swap Spreads

Default swaps are the most common form of credit derivative. With a given
maturity T , a default swap is an exchange of an annuity stream at a constant
coupon rate until maturity or default, whichever is first, in return for a
payment of X at default, if default is before T , where X is the difference
between the face value and the recovery value on the stipulated underlying
bond. A default swap can thus be thought of as a default insurance contract
for bond holders that expires at a given date T , and makes up the difference
between face and recovery values in the event of default.
By considering the market valuation of default swaps, we can effectively

uncover (as explained below) the term structure of credit spreads for par
coupon bonds. This is a measure of credit spreads that is more standard than
the zero-coupon bond term structure considered above. Moreover, our results
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regarding the shape of the zero-coupon term structure ϕ(t, ·) are sensitive
to our assumption regarding how these strips share in the assets remaining
after default. Default-swap spreads depend only on the total recovery value
to the underlying consol bond.
We assume, as typical in practice, that the default-swap annuity payments

are made semiannually, and that the default swap’s maturity date T is a
coupon date. We take the underlying bond to be the consol bond issued by
the firm in our example. This fixes the default-contingent payment, for each
default swap, of

X = 1− (1− α)δVB
(r − µ)D .

We can solve for the at-market default-swap spread, which is the annu-
alized coupon rate c(t, T ) that makes the default swap sell at time t for a
market value of 0. With T = t+ n/2, for a given positive integer n, we have

c(t, T ) =
2XE[e−r(τ−t)1{τ<T}]∑n
i=1 e

−0.5riE[1{τ>t+0.5i}]
.

Default-swap spreads are a standard for price quotation and credit infor-
mation in bond markets. In our setting, they have the additional virtue of
providing implicitly the term structure of credit spreads for par floating-rate
bonds of the same credit quality as the underlying consol bond, in terms of
default time and recovery at default.16

2.5 Summary of Empirical Implications

We summarize some of the empirical implications of our model for corporate
debt valuation as follows.
Even if default is triggered by an insufficient level of assets relative to

liabilities, observable variables that are correlated with current asset-liability

16This follows from the fact that, without transactions costs, a default swap can be
viewed as an exchange of a par floating-rate default-free bond of maturity T for a par
defaultable floating-rate bond of the same maturity. This is the case because this portfolio
has an initial market value of 0 (as an exchange of par for par), provides an annuity until
min(τ, T ) at a coupon rate which is the credit spread of the defaultable bond over the
default-free bond, and at default, if before T , is worth X − 100. This follows from the
fact that a default-free floating rate bond is always worth its face value. This argument
ignores the impact of default between coupon dates, which is negligible except in extreme
cases. See Duffie (1999).
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Figure 10: Default swap spreads with perfect and imperfect information.
Base case.

ratios have explanatory power for credit spreads and for default probabilities.
For example, as with Bijnen and Wijn (1994), Lennox (1999), Lundstedt and
Hillgeist (1998), McDonald and Van de Gucht (1999), and Shumway (1996),
firm-specific ratios (such as interest expense to income), or macroeconomic
variables related to the business cycle, may have predictive power for default
probabilities or yield spreads, even after exploiting asset and liability data.
(We offer some specific modeling in Section 3.) We have also shown the
contributing role of lagged accounting variables.
Perfect observation in standard diffusion models of corporate debt, such as

those Leland (1994) and Longstaff and Schwartz (1995), implies that credit
spreads also go to zero as maturity goes to zero, regardless of the credit
quality of the issuer.17 For poorer-quality firms, credit spreads would widen
sharply with maturity, and then typically decline. With imperfect informa-
tion about the firm’s value, however, credit spreads remain bounded away

17In a model such as that of Merton (1974), when the “solvency ratio” of asset value
to the face value of debt is less than one, the default probability goes to 1, and spreads
therefore to infinity, as time to maturity goes to 0.
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from zero as maturity goes to zero. The shape of the term structure of credit
spreads is moderated, and may provide some indication of the quality of
accounting information assumed by investors.18

A “Jensen effect” implies a lower price of debt, fixing the reported level of
assets, for an issuer with a conditionally unbiased but imperfect asset report
than for a perfectly observable issuer that is otherwise identical. This follows
from the fact that, under certain conditions, including examples provided
in this paper, corporate bond prices in a setting of perfect information are
concave in the issuer’s asset level.
Our model is consistent with the fact that bond or equity prices often

drop precipitously at or around the time of default. Empirically, given the
imperfect manner in which the “surprise” may be revealed around the time
of default, we would expect to see a marked increase in the volatility of bond
returns during the time window bracketing default. Some evidence in this
direction is already available in Beneish and Press (1995) and Slovin, Sushka,
and Waller (1997).19

3 Extensions

This section outlines some extensions of the basic model. First, we allow for
inference regarding the distribution of assets from several variables correlated
with asset value, or from more than one period of accounting reports. We
briefly discuss how to model re-capitalization, or decisions by the firm that
may be triggered by more than one state variable, such as a stochastic liq-
uidation boundary. We characterize the default intensity for cases in which
the asset process V is a general diffusion process, with a general observation
scheme.

18For theoretical or empirical evidence of how the shape of the term structure of credit
spreads depends on credit quality, see Fons (1994); He, Hu, and Lang (1999); Helwege
and Turner (1999); Johnson (1967); Jones, Mason, and Rosenfeld (1984); Pitts and Selby
(1983); and Sarig and Warga (1989). For an empirical study linking the quality of account-
ing information, as measured by a rating of disclosure quality provided by the Financial
Analysts Federation, to the price and rating of corporate debt, see Sengupta (1998).
19Some of the evidence presented in Slovin, Sushka, and Waller (1997) is through the
stock price reaction of creditors of the defaulting firm.
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3.1 Conditioning on Several Signals

Suppose, extending from Section 2.2, that the observation Yt made at time t
is valued in IRk for some k ≥ 1, and is joint normal with Zt. This may accom-
modate observations, beyond merely noisy observation of assets, that have
explanatory power for credit risk and yield spreads, such as various account-
ing ratios, peer performance measures, or even macro-economic variables,
such as consumer sentiment panel data, stock-market indices, or economic
growth-rate measures.
For convenience, we let GY (Zt) denote the conditional expectation of Yt

given Zt. That is, GY : IR → IRk is affine, and determined as usual by the
means and covariances of (Yt, Zt). We note that, by joint normality, if we
define Ut to be the “residual vector” Ut = Yt−GY (Zt), then Ut is independent
of Zt. We let φU( · ) denote the (joint-normal) density of Ut, and φY ( · ) denote
the joint density of Yt. Now, b in (17) is re-defined by

b(x | Yt, z0, t) =
ψ(z0 − v, x− v, σ

√
t)φU(Yt −GY (x))φZ(x)
φY (Yt)

, (30)

and the solution for g given by (19) continues to apply.

3.2 Conditioning with Several Periods of Reports

We now suppose that noisy reports of assets arrive at successive integer
dates. Because it is reasonable to allow for persistence in accounting noise, we
suppose that U1, U2, . . . may be serially correlated. Specifically, we suppose
that Yi = Zi + Ui, for

Ui = κUi−1 + εi, (31)

where κ is a fixed coefficient and ε1, ε2, . . . are independent and identically
distributed normal random variables, independent of Z.
Let

• z(n) = (z1, z2, . . . , zn) denote an outcome of Z(n) = (Z1, Z2, . . . , Zn).

• y(n) = (y1, y2, . . . , yn) denote an outcome of Y (n) = (Y1, Y2, . . . , Yn).

• u(n) = y(n) − z(n) denote an outcome of U (n) = Y (n) − Z(n).
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We let bn( · | Y (n)) denote the improper conditional density of Z(n), killed
with first exit before time n, given Y (n). As with (16), this is the density
defined by P (Z(n) ∈ dz(n) and τ > n | Y (n)). For notational simplicity, at
the outcomes z(n), y(n), and u(n), we let pU(un | un−1) denote the transition
density of U1, U2, . . .; pZ(zn | zn−1) denote the transition density of Z1, Z2, . . .;
and pY (yn | y(n−1)) denote the conditional density of Yn given Y (n−1). For the
case of κ = 0 (serially uncorrelated noise), it may be seen that Y1, Y2, . . . is
auto-regressive of order 1, and pY takes a simple form.
By Bayes’ Rule,

bn
(
z(n) | y(n)

)
=

P (τ > n, Z(n) ∈ dz(n), Y (n) ∈ dy(n))
P (Y (n) ∈ dy(n)) .

As the event {τ > n, Z(n) ∈ dz(n), Y (n) ∈ dy(n)} is the same as the event
A ∩ B, where A = {τ > n, Zn ∈ dzn, Yn ∈ dyn} and

B = {τ > n− 1, Z(n−1) ∈ dz(n−1), Y (n−1) ∈ dy(n−1)},

we have

bn
(
z(n) | y(n)

)
=

P (A |B)P (B)
pY (yn | y(n−1))P (Y (n−1) ∈ dy(n−1))

. (32)

After some straightforward manipulation of this expression, we find that
bn
(
z(n) | y(n)

)
is given by

ψ(zn−1 − v, zn − v, σ)pZ(zn | zn−1)pU(yn − zn | yn−1 − zn−1)b(z(n−1) | y(n−1))
pY (yn | y(n−1))

.(33)

After conditioning on Y (n) and also on survival to time n (that is, on the
event τ > n), we have the conditional density gn( · | Y (n)) of Z(n), given by

gn(z
(n) | y(n)) = bn(z

(n) | y(n))∫
A(n)

bn(z | y(n)) dz
, (34)

where the region of integration for the denominator (survival) probability is

A(n) = {z ∈ IRn : z1 ≥ v, . . . , zn ≥ v}.

We do not have an explicit solution for the survival probability,
∫
A(n)

bn(z | y(n)) dz,
but numerical integration can be done recursively, one dimension at a time,
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from the explicit recursive solution (33) for bn. Given the joint density
gn
(
z(n) | y(n)

)
for Z(n), we can integrate with respect to z(n−1) to obtain the

marginal density of zn, and from this the intensity
20 of τ on date n, for n < τ .

3.3 General Default or Re-Structuring Intensity

Our results in Section 2 on default intensity can be significantly extended.
As with Fischer, Heinkel, and Zechner (1989) and Leland (1998) one can

consider cases in which the firm will re-capitalize when the level of assets
reaches some sufficiently high level v. For example, the firm could issue
callable debt, giving it the right to pay down the existing debt at face value.
For a given fixed frictional cost for calling the debt, it would be optimal to
call when V hits a sufficiently high level v. In order to compute the density
f of Zt given a noisy signal Yt, and neither liquidation nor re-capitalization
by t, we would simply replace the probability ψ(z, x,

√
t) used in (17) with

the analogous term based on the probability ψ∗(z, y, z,
√
t) that a pinned

standard Brownian motion starting at z ∈ (0, z) at time 0, and finishing
at time t at level y, does not leave the interval (0, z) during [0, t]. This
probability can be obtained explicitly from results found, for example, in
Harrison (1985). As for the intensity, we let τ ∗ = inf{t : Vt 6∈ (v, v)},
τ = inf{t ≤ τ ∗ : Vt ≥ v}, and τ = inf{t ≤ τ ∗ : Vt ≤ v}. At t < τ ∗, the
intensity λt of τ is given by

λt = −
1

2
σ2fx(t, v), t < τ. (35)

The (Ht)-intensity λ∗ for τ ∗ is given at t < τ ∗ by λ+ λ.
Another useful generalization replaces the constant default-triggering bound-

ary v with a process Z, whose value Z(t) at tmay not be observable. Suppose,
for example, that Z is a Brownian motion (with some drift and volatility pa-
rameters). The difference Z∗ = Z − Z is then itself a Brownian motion,
and τ = inf{t : Z∗t ≤ 0} is a first-passage time that may be treated by the
same methodology just developed. An extension of our result by Song (1998)
treats multi-dimensional cases, for example for a model in which the differ-
ence Z∗ = Z −Z is not a one-dimensional diffusion, and the hitting problem
20In order to compute the intensity, it is of course numerically easier to obtain the
derivative of bn with respect to zn explicitly, and then to integrate this with respect to
z(n−1), reversing the order of differentiation and integration to save one numerical step.
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therefore must be formulated as that of a two-dimensional process crossing
a smooth surface.
Indeed, even if the boundary Z is constant in t, but uncertain, we can

apply our results to Z∗, defined by Z∗t = Zt − Z, provided Z is itself incom-
pletely observed. If Z is perfectly observed, however, then our theory does
not apply, as the conditional density of Z∗t is not both zero and smooth at
zero21. Lambrecht and Perraudin (1996) have presented a model of default
based on first passage of an observed diffusion for assets to a trigger bound-
ary that is unobserved by certain debtholders, who are each uncertain of the
other debtholder’s valuation of the firm in default.
We can also accommodate an underlying asset process V that need not be

a geometric Brownian motion. For example, suppose V satisfies a stochastic
differential equation of the form

dVt = µ(Vt, t) dt+ σ(Vt, t) dWt.

Consider, moreover, some general observation scheme, perhaps continual in
time as in Kusuoka (1999), for which, at t < τ there exists a conditional
density f(t, · ) for Vt. We show in Appendix B, under technical conditions
on µ, σ, and f , that the intensity process λ for first hitting of V at v is given
by

λt =
1

2
σ2(v, t)fx(t, v), t < τ. (36)

21For an argument, see our working-paper version.
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Appendices

A Proof of Proposition 2.2

Let Zt = Z0 + mt + σWt. Without loss of generality, let v = 0 and define
τ0 = inf{s > 0 : Zs = 0}. To begin with, we consider a fixed time t > 0. For
now, we suppose that the only information available is survivorship; that is,
Ht is generated by {1{τ0>s} : s ≤ t}. On the event τ0 > t, it follows directly
from results in Harrison (1985) that Zt has a conditional density f(t, · ),
denoted f( · ) for notational simplicity. This density is bounded, satisfies
f(0) = 0, and has a bounded derivative, with f ′(0) defined from the right.
We let

λ = lim
h→0

1

h

∫
(t,∞)

π(h, x,m, σ)f(x) dx,

where π(h, x,m, σ) denotes the probability of first passage to zero before time
h for an (m, σ)-Brownian motion with initial condition x. Our first objective
is to show that this limit exists and that

λ =
1

2
σ2f ′(0). (A.1)

From expression (11) on page 14 of Harrison (1985) (noting that the proba-
bility of hitting 0 before h starting from x > 0 with drift m is the probability
of hitting the level x starting from 0 before h with drift −m), we have, by
substituting z = x/(σ

√
h),

λ = lim
h→0

1

h

∫
(0,∞)

(
1− Φ

(
x+mh

σ
√
h

)
+ exp

(
−2mx

σ2

)
Φ

(
−x+mh
σ
√
h

))
×f(x) dx

= lim
h→0

∫
(0,∞)

(
1− Φ

(
z +

m
√
h

σ

)
+ exp

(
−2m

√
hz

σ

)
Φ

(
−z + m

√
h

σ

))

×1
h
f
(
σ
√
hz
)
σ
√
h dz,

= lim
h→0

∫
(0,∞)

G1(z, h)G2(z, h)z dz,
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where

G1(z, h) = 1− Φ
(
z +

m
√
h

σ

)
+ exp

(
−2m

√
hz

σ

)
Φ

(
−z + m

√
h

σ

)

and

G2(z, h) =
f
(
σ
√
hz
)

σ
√
hz

σ2.

Thus, if the dominated convergence theorem can be applied, we have

λ =

∫
(0,∞)

G1(z, 0)G2(z, 0)z dz

=

∫
(0,∞)

(1− Φ (z) + Φ(−z)) f ′(0)σ2z dz (A.2)

= σ2f ′(0)

∫
(0,∞)

2Φ(−z)z dz = 1
2
σ2f ′(0),

as desired. To justify dominated convergence, first note that since the deriva-
tive of f is bounded, there exists a constant K such that∣∣∣∣∣f(σ

√
hz)

σ
√
hz

∣∣∣∣∣ ≤ K. (A.3)

Now note that (for h < 1)

|G1(z, h)| ≤ G(z) ≡ 1− Φ
(
z − |m|

σ

)
+ exp

(
2|m|z
σ

)
Φ (−z) .

We use the fact that 1− Φ(x) behaves like φ(x)
x
as x → ∞ to see that G(z)

goes to zero exponentially fast as z → 0. Hence, we have shown that for
h < 1,

|G1(z, h)G2(z, h)z| < Kσ2zG(z),

and this provides the integrable upper bound (for all h < 1) justifying the
application of dominated convergence.
In our model there is perfect information at time Z0 and we can therefore

only establish the existence of an intensity for t > 0 and we do this by
proving existence on compact intervals of the form [t, T ] for all t > 0. Having
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established (A.1), we need to check (see Aven (1985)) that there exists a
positive measurable process γ satisfying for every T∫ T

t

γ(s, ω) ds <∞ a.s,

and which dominates the error of approximation in the following sense. For
each T, there exists for almost every ω an n0 = n(T, ω) such that, for n > n0,

|Yn(s, ω)− λ(s, ω)| ≤ γ(s, ω) for all s ≤ T,

where Yn is the process defined by

Yn(s) =
1

hn
P (τ0 ≤ s+ hn | Hs)1{τ>s},

for some fixed sequence {hn} of positive reals converging to zero. Note that
n0 can depend on ω.
We first verify that the process λ itself satisfies this integrability condition.

Assume Z0 = z0. Between time t and the first accounting report at time t1,
assuming no default, the density of Zt can be written as f̃(t, ·, z0), which
does not depend on ω and has an analytical expression. [See, for example,
Harrison (1985).] This density satisfies f̃x(t, 0, z0) = 0 and is differentiable as
a function of (t, x), with the derivative fx(t, ·, z0) bounded uniformly on [t, t1)
as can easily be seen by including t1 in the domain. The density at the first
accounting report is derived in Section 2.3 as g(x | Y (t1, ω), z0, t1), which for
each given outcome Y (t1, ω) is zero for x = 0 and has a bounded derivative
with respect to x. If we let s be a given time after the first accounting report
but before the next, the density of Zt+s is given by∫ ∞

0

f̃(s, x, u)g(u|Y (t1, ω), z0, t1) du.

The derivative with respect to x can be taken inside the integral, so the
derivative of the density at time t+ s with respect to the point x is

fx(t1 + s, x, ω) =

∫ ∞
0

d

dx
f̃(s, x, u)g(u | Y (t1, ω), z0, t1) du.

We see from these two expressions that the density inherits from f̃ the prop-
erties of being 0 at x = 0 and having a uniformly bounded derivative with
respect to x over the finite interval [t1, t2). Since there are only finitely many
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accounting reports over a finite period of time, it follows that the bound of
the derivative can be obtained by taking the maximum of the bounds needed
for each interval between accounting reports22. This proves integrability of a
sample path of λ by proving the stronger property that for each ω, fx(t, ·, ω)
is bounded as a function of x, with one bound holding uniformly over [t, T ].
It now follows from the triangle inequality that we only need to verify

that for each t, there exists for almost every ω an n0 = n(t, ω) such that∫ T
t

|Yn(s, ω)| ds <∞, n > n0. (A.4)

To see this, we first note that, by the strong Markov property of Z, on the
event {τ > t},

P (τ0 ≤ hn + t | Z(t)) = π(hn, Z(t), m, σ).
Because π(hn, z

√
hn, m, σ) declines exponentially fast in z,

|Yn(s, ω)| =
∫ ∞
0

π(hn,
√
hnz,m, σ)

∣∣∣∣f(s,
√
hnz, ω)√
hnz

∣∣∣∣ z dz
is bounded, using the fact shown above that, for almost every ω (and n such
that hn < 1), the derivative fx(s, x, ω) is bounded uniformly in s. Hence∫ t
0
|Yn(s, ω)| < ∞ whenever n0 is chosen so that hn < 1 for n > n0. This

concludes the proof.

B General Diffusion Results

We now provide results regarding the default intensity and conditional den-
sity for cases in which the asset process V solves a stochastic differential
equation of the form

dVt = µ(Vt, t) dt+ σ(Vt, t) dWt. (B.1)

Without loss of generality we study the first hitting time of the level 0 starting
from an unknown positive level. We will use the following regularity for the
coefficient functions µ and σ.

Condition A.
22We use the fact that there are no exact accounting reports after t. At such times the
intensity would not exist, just as it does not exist at time 0 when Z0 is known. To have
exact reports but still maintain an intensity, one could introduce random report times,
where the report times themselves have an intensity process.
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A1. The coefficients µ and σ satisfy global Lipschitz and linear growth
conditions, in that there exists a fixed constant K such that, for any
x, y, and t,

|µ(x, t)− µ(y, t)|+ |σ(x, t)− σ(y, t)| ≤ K |x− y| (B.2)

µ(x, t)2 + σ(x, t)2 ≤ K2(1 + x2). (B.3)

A2. There exist constants l and r, with −∞ ≤ l < 0 < r ≤ ∞, such
that σ( · , t) is bounded away from 0 on every compact subset of (l, r) ,
uniformly in t, and such that P (Vt ∈ (l, r) for all t) = 1.

A3. σ( · , · ) is C1 on (l, r)× [0,∞).

Condition (A1) is standard, ensuring that a unique, strong solution to the
SDE exists. (A2) allows for cases (such as geometric Brownian Motion less
a constant) in which the diffusion lives in an open (proper) subset of IR,
containing the boundary, and the volatility function is positive on this subset.
(A3) facilitates the proof, but can be relaxed. We consider a case with no
instances of perfect information and assume that for every t ≥ 0, Vt admits
a regular conditional distribution function F ( · | Ht) given Ht). That is,

1. For each x > 0, F (x | Ht) is a version of P (Vt < x | Ht).

2. For every ω, F ( · | Ht)(ω) is a distribution function.

On (ω, t) for which τ(ω) > t, we assume that F ( · | Ht) has a density denoted
f(t, · , ω) (or sometimes simply “f(t, · ),” notationally suppressing depen-
dence on ω). Whenever τ(ω) ≤ t, we arbitrarily set f(t, x, ω) = 0. Condition
B forms technical assumptions regarding this conditional density.

Condition B.

B1. For each (ω, t), we have f(t, 0, ω) = 0 and f(t, · , ω) is continuously
differentiable on (0,∞) and differentiable from the right at x = 0.
Furthermore, for almost every ω, |fx(s, x, ω)| is bounded on sets of the
form {(s, x) : 0 ≤ s ≤ t, 0 ≤ x <∞}.

B2. For each fixed x > 0, the process {fx(t, x) : t ≥ 0} is (Ht)-progressively
measurable.
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We have seen that Condition B holds in our basic model. Smoothness of
f also holds for more general diffusions under purely technical smoothness
conditions on the drift coefficients m and the volatility σ, with a filtration
(Ht) defined by “noisy observation,” as shown below.
The general result is as follows.

Proposition B.1 Let V be given by (B.1), with µ and σ satisfying Condition
A. Suppose, for t < τ = inf{t : Vt ≤ 0}, that the distribution of Vt given Ht
has a density f(t, · ), where f : [0,∞)× IR× Ω→ [0,∞) satisfies Condition
B. Let λ(t) = 0 for t > τ and let

λt(ω) =
1

2
σ2(0, t)fx(t, 0, ω), 0 ≤ t ≤ τ. (B.4)

Then λ is an23 (Ht)-intensity process of τ .

An outline of the proof24 is as follows: First one shows, by deterministic
scaling and time transformation of a Brownian motion, that the limit result
(A.1) holds for an Ornstein-Uhlenbeck process, that is, for V satisfying

dVt = (a+ bVt) dt+ σ dWt.

The fact that the limit does not depend on the drift generalizes to SDEs of
the form

dVt = µ(Vt, t) dt+ σ dWt, (B.5)

in which µ satisfies a linear growth condition, since the solution to the SDE
(B.5) can be kept pathwise between two OU processes on a fixed interval, and
for these processes we have just seen that the hitting intensity is independent
of the drift coefficients. In the general case (B.1), we define the function H
by

H(x, t) =

∫ x
0

1

σ(y, t)
dy, x ∈ (l, r).

23While there may exist other (Ht)-intensity processes for τ, they are equivalent for our
purposes. For the sense in which uniqueness applies, see Brémaud (1981), page 30.
24For details, see the working-paper version. A new proof of our result is due to Elliott,
Jeanblanc and Yor (1999) and a multivariate extension of our intensity formula (B.4) has
been developed by Song (1998).
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Then, with Yt = H(Vt, t), we have by Ito’s Formula that

dYt = µY (Yt, t) dt+ dWt,

where µY (Yt, t) can be computed using Ito’s Formula. The first passage time
of V to the level 0 is the same as the first passage time of Y to the level 0.
Our regularity conditions ensure that the drift coefficient µY of Y satisfies
Condition A and that the density g( · ) of the initial level of the process Y
satisfies Condition B. Therefore, since Y has a constant volatility of 1, we
know from above that the limit (A.1) when considering Y hitting 0 is equal to
g′(0)/2 which can be shown to equal 1

2
f ′(0)σ2(0, 0), proving the limit result

for the general case. Given the boundedness condition on f ′, the verification
of Aven’s condition is analogous to the argument given in Appendix A.
Finally, we show that existence of a smooth conditional state density

that is zero on the hitting boundary, as assumed in Condition B, is natural
in our setting. We begin with the following result, which conditions only on
survivorship, and follows from Corollary 3.43, page 99, of Cattiaux (1991).

Proposition B.2 Suppose V satisfies dVt = µ(Vt) dt+ σ(Vt) dWt, where µ :
IR → IR and σ : IR → IR and all of their derivatives exist and are bounded.
Suppose, moreover, that σ( · ) is bounded away from zero in an open interval
D ⊂ IR, possibly unbounded. Let D denote the closure of D and τ = inf{t :
Vt 6∈ D} denote the time of first exit from D. Then, for any initial condition
V0 in D and any time t > 0, the distribution of Vt conditional on {τ > t}
has a C∞ density on D that is zero on the boundary of D.

Now, for a given V0 ∈ D and time t > 0, we consider the distribution of
Vt conditional on no exit from D and some “noisy observations” Y1, . . . , Yn
that may be correlated with the process V . To pick a concrete example that
generalizes the case studied in Section 2.2, we suppose that Yi = V (ti) + Ui,
where 0 < t1 < · · · < ti < t, and where U1, . . . , Un are independent, and
independent of V , and where the distribution of Ui has a density that is
strictly positive on the real line. We let F ( · ;Y1, . . . , Yn) denote the condi-
tional distribution of Vt given {1{t<τ}, Y1, . . . , Yn}.

Corollary B.3 On the event τ > t, F ( · ;Y1, . . . , Yn) has, almost surely, a
C∞ density on D that is zero on the boundary of D.

A proof is provided in the working-paper version of this report, based on
Proposition B.2 and Tjur (1974, pp. 260-261), as well as induction in n.
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